
32 The Delphi Magazine Issue 43

DelayLoading Of DLLs
Curing the VC++6.0 envy
by Hallvard Vassbotn

I don’t miss many features from
Microsoft’s Visual C++ 6.0 when

working in Delphi, but the new
/DELAYLOAD option of the linker is
one of them. It lets you turn
normal, implicit DLL import librar-
ies into so-called delayload import
libraries. This means that the DLL
will not be loaded by the operating
system during startup of the EXE
file, but rather as needed, when
you actually call the routines. The
first time a specific DLL routine is
called, the DLL is loaded with
LoadLibrary and the routine
address is retrieved with
GetProcAddress. This is accom-
plished simply by turning on the
/DELAYLOAD option of the linker,
specifying what DLLs you want to
be delayloaded.

In this article, we will show how
we can implement a framework for
obtaining similar behaviour in our
Delphi applications.

References
Both Jeffrey Richter and Matt
Pietrek document the new
/DELAYLOAD feature in the December
1998 issue of MSJ1. As usual, Pietrek
gives the most detailed technical
description, right down to the
assembly code thunks created by
the linker. In Issue 7 of Developers
Review (www.itecuk.com), Dave
Jewell also wrote favourably about
this feature in his review of VC++
6.0 under the sub-heading A Linker
To Die For.

In the infancy of The Delphi
Magazine, back in Issue 1 (April
1995), Dave Jewell started up his
Delphi Internals column with the
article Using and Writing DLLs. And
in the following issue Bob Swart
demonstrated how to explicitly
load DLLs at runtime to allow for
more flexible applications in his
Tic-Tac-Toe article. We will not
duplicate all of the information in
those articles, but let us quickly go
through the classical ways of
accessing routines in a DLL.

Implicit Loading
The most common way of using a
DLL is to let the operating system
implicitly load the DLL when the
EXE file is launched. This is
achieved by declaring the routine
with the external directive, speci-
fying the name of the DLL:

procedure MyRoutine(
A, B, C: integer);
external ‘MyDll.Dll’;

The operating system will search
for the DLL in the EXE directory,
current directory and the system
directories. If the DLL cannot be
found, the operating system will
issue an error message and refuse
to launch the application. This is
one of the major drawbacks of
using implicit loading: you cannot
have a flexible application that will
work even if the DLL is not present.

By default, the compiler will use
the name of the routine as given in
the Pascal declaration. If the actual
name in the DLL differs from this,
we can use the name directive to
override it. For instance, many of
the Win32 API routines actually
have names ending with an A (for
ANSI) instead of the more well
known names. The aliasing is done
like this:

function PeekMessage;
external ‘user32.dll’

name ‘PeekMessageA’;

Note that the names of exported
DLL routines are case sensitive.
Routines can also be referenced by
an ordinal number. Sometimes,
routines are exported using only
ordinal numbers. We might also
want to import routines by ordinal
value to speed up the linking
process or make it harder for hack-
ers to determine the names of rou-
tines we are using. In any case, to

import a routine by ordinal value,
we use the index directive:

procedure MyRoutine(
A, B, C: integer); external
‘MyDll.Dll’ index 14;

Normally, we don’t declare the
DLL routines each time we want to
use them, instead, we create an
import unit that declares all the
routines in a particular DLL. Over
time there might be new versions
of the DLL with new routines
included. Unfortunately, if we
create an import unit declaring all
the routines in the latest version of
the DLL, the application will not
load if only an older version of the
DLL is present. The problem is that
if the operating system cannot find
all the imported entries it will
refuse to load the application.

Classical Explicit Loading
To overcome the shortcomings of
the implicit loading technique, we
can get a higher level of control by
loading the DLL (using Load
Library) and linking to the routines
(using GetProcAddress) ourselves.
By doing this we can get the follow-
ing potential benefits: loading the
DLL only when necessary,
disabling features in missing DLLs,
checking the DLL version (only
linking to and calling supported
routines) and unloading the DLL
when it is no longer needed.

There are different ways to
implement explicit loading. The
two main strategies differ in when
to load the DLL and when to link to
the routines. The simplest tech-
nique does all of the linking at
initialisation time. This is the
approach taken by Bob Swart in
his Tic-Tac-Toe article, see the
sample in Listing 1.

This allows the program to
check the MagicLoaded variable and

1. Microsoft Systems Journal, Vol 13 No 12, December 1998.
Win32 Q&A by Jeffrey Richter (http://www.microsoft.com/msj/1298/win32/win321298top.htm)
Under The Hood by Matt Pietrek (http://www.microsoft.com/msj/1298/hood/hood1298top.htm)

March 1999 The Delphi Magazine 33

simply disable the options in the
application that rely on the DLL,
should it be missing. This
approach works fine in most situa-
tions, but if not all of the functions
are available in the DLL (it could be
an older version, for instance), the
corresponding procedural vari-
able will be set to nil. If the applica-
tion calls the routine, it will fail
with an Access Violation. In addi-
tion, the unit loads the DLL at
startup, so the memory and load-
ing time overhead is the same,
even if the DLL is never used.

A slightly more advanced tech-
nique only loads the DLL the first
time it is needed and only links in
the routines that are actually
called. An example of this can be
seen in the import unit for MAPI,
supplied with Delphi 2, 3 and 4. To
import a single routine, the code in
Listing 2 is required.

As you can see, there is quite a
lot of code here just for importing a
single routine. The rest of the unit
contains almost identical code to
import another 13 routines; the
unit totals almost 600 lines. So even
if the advantages of using explicit
loading are intriguing, the over-
head of implementing it like this
makes you think twice. We will now
see how we can simplify writing
explicit import units while still
keeping all the stated benefits,
adding a couple more of our own.

Improved Explicit Loading
How can we keep the logic of only
loading routines as they are called,
but reduce the amount of code we
must write for each imported rou-
tine? The trouble with the MAPI
example in Listing 2 is that it
always goes through the wrapper
routine in the implementation part.
What if we move the procedural
variables into the interface sec-
tion? Then we can initialise them to
a corresponding thunking routine
that is responsible for linking to
the DLL routine the first time it is
called. The thunking routine fixes
up the variable and then calls
through it to go to the DLL. The
next time a call is made through the
procedural variable, it goes
directly to the DLL. See Listing 3 for
an example implementation.

unit MAGIC;
Const
MagicLoaded: Boolean = False;

var
NewGame: function: HGame;
...

implementation
begin
DLLHandle := LoadLibrary('MAGIC.DLL');
if DLLHandle >= 32 then begin
MagicLoaded := True;
@NewGame := GetProcAddress(DLLHandle,'NEWGAME');
...

end;
end.

interface
...
type
PFNMapiLogon = ^TFNMapiLogOn;
TFNMapiLogOn = function(ulUIParam: Cardinal; lpszProfileName: LPSTR;
lpszPassword: LPSTR; flFlags: FLAGS; ulReserved: Cardinal;
lplhSession: PLHANDLE): Cardinal stdcall;

function MapiLogOn(ulUIParam: Cardinal; lpszProfileName: LPSTR;
lpszPassword: LPSTR; flFlags: FLAGS; ulReserved: Cardinal;
lplhSession: PLHANDLE): Cardinal;

implementation
var LogOn: TFNMapiLogOn = nil;
function MapiLogOn(ulUIParam: Cardinal; lpszProfileName: LPSTR;
lpszPassword: LPSTR; flFlags: FLAGS; ulReserved: Cardinal;
lplhSession: PLHANDLE): Cardinal;

begin
InitMapi;
if @LogOn = nil then
@LogOn := GetProcAddress(MAPIModule, 'MAPILogOn');

if @LogOn <> nil then
Result := LogOn(ulUIParam, lpszProfileName, lpszPassword, flFlags,
ulReserved, lplhSession)

else Result := 1;
end;

➤ Above: Listing 1 ➤ Below: Listing 2

This works quite neatly. The
startup time is reduced to practi-
cally zero, the DLL is not loaded
until one of the routines in it is
called and if the DLL or routine is
missing, a nice exception is raised
(inside the GetTestDLLFunc routine,
see the disk for details).

However, I’m still not satisfied.
We still have to write boilerplate
code for each imported routine,
the name of the routine is repeated
7 times and we have 6 lines of code
for each import. In addition, there
is a fixed overhead of support
code. Contrast this with the sim-
plicity of the implicit import unit in
Listing 4. To get a correspondingly
smooth way of writing explicit

import units, we must take off the
silk gloves and sharpen our
hacking skills...

Effortless Explicit Loading
The goal we should set is to write a
support unit that will enable us to
do dynamic explicit linking just as
easily as implicit linking. For the
solution that we will go through,
we will actually achieve all the
stated benefits while being able to
write simple import units like the
one in Listing 5.

What we have done is declare
the routines as procedural vari-
ables with the correct parameter

unit ExpImpTestDll;
interface
var Routine1 : procedure (A, B, C, D: integer);
...
implementation
...
// <-- Support-code goes here
...
procedure Routine1_Thunk(A, B, C, D: integer);
begin
Routine1 := GetTestDllFunc('Routine1');
Routine1(A, B, C, D);

end;
...
initialization
Routine1 := Routine1_Thunk;
...

end.

➤ Listing 3

34 The Delphi Magazine Issue 43

unit ImpImpTestDll;
interface
procedure Routine1(A, B, C, D: integer);
...
implementation
procedure Routine1; external 'TestDll.Dll' name 'Routine1';
...
end.

and calling convention signature in
the interface section of the unit.
We also declare an instance of the
TDll class declared in the HVDll
unit. This is not strictly required,
but it can be useful for gaining
greater control.

Then in the implementation sec-
tion we declare an initialised array
of TEntry records. There is one slot
in the array for each routine. We
give the address of each routine’s
procedural variable and the name
of the routine as exported from the
DLL. We can also import the entry
by ordinal by using the ID field of
the TEntry record. In the initial-
ization section, we create the TDll
instance, sending in the default
name of the DLL and the array of
TEntry records.

That’s it. It is really that simple.
And it works!

When launching an application
using this unit, Testdll.Dll will not
be automatically loaded. The appli-
cation can change the path to the
DLL, using the FullPathproperty of
the TestDll object. The first time a
call is made through one of the pro-
cedural variables, the DLL will be
loaded with LoadLibrary and that
routine will be linked to using Get
ProcAddress. The procedural vari-
able will have its contents patched,
so the next time the call is made it
goes straight to the DLL code.

The DLL can later be unloaded
by calling TestDll.Unload. The

unit DynLinkTest;
interface
uses
HVDll;

var
Routine1 : procedure (A, B, C, D: integer); register;
Routine2 : procedure (A, B, C, D: integer); pascal;
Routine3 : procedure (A, B, C, D: integer); cdecl;
Routine4 : procedure (A, B, C, D: integer); stdcall;
TestDll: TDll;

implementation
var
Entries : array[1..4] of HVDll.TEntry =
((Proc: @@Routine1; Name: 'Routine1'),
(Proc: @@Routine2; Name: 'Routine2'),
(Proc: @@Routine3; ID : 3),
(Proc: @@Routine4; ID : 4));

initialization
TestDll := TDll.Create('Testdll.dll', Entries);

end.

➤ Above: Listing 4 ➤ Below: Listing 5

application could even decide to
use another version of the DLL in
mid session by assigning to the
FullPath property again. We will
now see how this kind of delayed
loading is implemented.

Let’s look under the hood to see
how the procedural variables are
magically linked to the DLL
routines as they are being called.

Let The Magic Begin
The only code that runs at initialis-
ation time is the call to the TDll
constructor, see Listing 6.

This code is trivial. It keeps the
name of the DLL and a pointer to
the array of TEntry records before
it calculates the number of entries
in the array. After calling a couple
of interesting named methods, it
adds itself to a global list of TDll
instances.

Generating Code On The Fly
To allow us to use the procedural
variables without more code than
we saw in Listing 5, we must some-
how dynamically compile code
thunks similar to the ones we saw
back in Listing 3. This requires

acting like a mini-compiler and
generating executable code on the
fly. To complicate matters, we
have to preserve the stack layout
and the contents of parameter
passing registers (EAX, EDX and
ECX). A single set of code must
handle all cases of calling
conventions and parameters.

As the first step, the Create
Thunks method is responsible for
dynamically creating these code
thunks. Essentially, it allocates a
block of memory and then fills it
with CPU instruction opcodes, see
Listing 7.

First, we get a memory block
large enough for the thunking
code. To help us get a memory
block that can be both modified
and executed, we use the CodeHeap
object maintained by the DLL’s
instance (see Proper Code Genera-
tion on page 42 for details).

Then we fill the block with the
CPU instructions needed to per-
form the thunking. For this pur-
pose we have defined a record
structure with appropriately
named fields. There is a fixed
10-bytes per DLL thunk consisting
of the following assembly code:

@@Header
PUSH Self
JMP ThunkingTarget

This code is responsible for push-
ing the address of the Self-pointer
(the TDll instance pointer) to the
stack and then transferring control
to the ThunkingTarget global proce-
dure. This allows ThunkingTarget
to easily know the TDll object this
call was made for and thus what
DLL it needs to link to.

After this fixed header, there is
an array of 5-bytes per routine
thunks, like this:

CALL Header

constructor TDll.Create(const DllName: string; const Entries: array of TEntry);
begin
inherited Create;
FFullPath := DllName;
FEntries := @Entries;
FCount := High(Entries) - Low(Entries) + 1;
CreateThunks;
ActivateThunks;
Dlls.Add(Self);

end;

➤ Listing 6

36 The Delphi Magazine Issue 43

This instruction simply calls back
up to the per-DLL header. The pur-
pose of the call is to have the CPU
push the return address for this
instruction to the stack. We will
never actually return to this
address, but we will use it as a base
value from which we can calculate
the index of the DLL routine we are
calling.

Therefore, if we are importing
three routines from a DLL, the total
dynamically generated code will
look like this:

@@Header
PUSH Self
JMP ThunkingTarget
CALL Header
CALL Header
CALL Header

Now that we have some properly
encoded machine instructions in
memory, we are ready to assign the
procedural variables their initial
value. This is done in the Activate
Thunks method, see Listing 8.

Here we simply loop through all
the TEntry records in the FEntries
array and patch the procedure
variables to point to the generated
thunks. After this, the procedural
variables are ready to be used.

Inside ThunkingTarget
When one of the procedural vari-
ables is called through, control will
be transferred to the corres-
ponding thunk. From here it calls
back up to the per-DLL header,
pushes the Self-pointer and jumps
on to the ThunkingTarget proce-
dure. This procedure is a bit tricky
and it has to be written in assembly
to allow us to save the contents of
certain registers, see Listing 9.

It is not obvious what this code
does, so let’s take it step by step.

First, we push the contents of the
EAX, EDX and ECX registers to the
stack. We have to preserve the con-
tents of these registers, because
they could contain parameter
values if the DLL routine we are
going to call uses the register
calling convention:

PUSH EAX
PUSH EDX
PUSH ECX

procedure TDll.CreateThunks;
const
CallInstruction = $E8;
PushInstruction = $68;
JumpInstruction = $E9;

var
i : integer;

begin
Dlls.CodeHeap.GetMem(FThunkingCode,
SizeOf(TThunkHeader) + SizeOf(TThunk) * Count);

with FThunkingCode^, ThunkHeader do begin
PUSH := PushInstruction;
VALUE := Self;
JMP := JumpInstruction;
OFFSET := PChar(@ThunkingTarget) - PChar(@Thunks[0]);
for i := 0 to Count-1 do
with Thunks[i] do begin
CALL := CallInstruction;
OFFSET := PChar(@ThunkHeader) - PChar(@Thunks[i+1]);

end;
end;

end;

procedure TDll.ActivateThunks;
var i : integer;
begin
for i := 0 to Count-1 do
FEntries^[i].Proc^ := @FThunkingCode^.Thunks[i];

end;

➤ Above: Listing 7 ➤ Below: Listing 8

Then we prepare to call the TDll
method DelayLoadFromThunk. We
don’t want to write too much
assembly code and prefer to
handle the more mundane details
using Object Pascal. DelayLoad
FromThunk is a method with one
parameter and it uses the default
register calling convention:

function TDll.DelayLoadFromThunk(

Thunk: PThunk): pointer;

register;

Because it is a method, it expects
to find the Self-pointer in the EAX
register and the Thunkparameter in
the EDX register. Both of these
values have previously been
pushed to the stack by our
generated code thunks (Self was
pushed explicitly, while the Thunk
address was pushed implicitly by
the CALL instruction). We simply
copy these values from the stack
into their correct register:

MOV EAX, [ESP+12] // Self

MOV EDX, [ESP+16] // Thunk

I found the correct locations of
these values (relative to the ESP
register), by analysing the con-
tents of the stack at that point, see
Figure 1.

I mentioned previously that we
would use the address of the thunk

procedure ThunkingTarget;
asm
PUSH EAX
PUSH EDX
PUSH ECX
MOV EAX, [ESP+12] // Self
MOV EDX, [ESP+16] // Thunk
SUB EDX, TYPE TThunk
CALL TDll.DelayLoadFromThunk
MOV [ESP+16], EAX
POP ECX
POP EDX
POP EAX
ADD ESP, 4
// "RETurn" to the DLL!

end;

➤ Listing 9

Continued on page 38
➤ Figure 1

March 1999 The Delphi Magazine 37

The Case Of The Broken Breakpoints
During the development of the HVDll unit pre-

sented in this article, I stumbled across a really
weird bug in the Delphi IDE’s integrated debugger.
This incident happened when I was using Delphi
3.02 (build 5.83), but it could also potentially exist in
Delphi 4. Unfortunately, I haven’t found a
step-by-step description of how to recreate this
bug, but I wanted to alert you to it so that you can
avoid the headaches I had to suffer...

After some initial debugging, my code was work-
ing as expected, both in the simple test project pro-
vided on the disk and in a much larger real life
project at work. The code had been running fine for
several days, when I suddenly experienced the
dreaded Access Violation exception. I could not for
the life of me understand why this was happening
but, as the humble programmer I am, I naturally
suspected my own code was to blame and busily
started debugging.

I quickly found that the first procedural variable
referenced in the Entries array in the import unit
was not being set. It maintained its initial nil value.
When the code later called through the nil pointer,
I naturally got the Access Violation exception.

Why wasn’t the variable being initialised cor-
rectly? It should have been set in the ActivateMethod,
see Listing 8.

When debugging this code, I found that the value
for FEntries^[0].Proc^was still nil after running the
loop! Something was definitely wrong here. I sim-
plified the code as much as possible, but the prob-
lem persisted. I used the CPU view to see what was
happening at the instruction level.

After simplifying the code, the key assembly
instruction for the failing code was:

MOV EDX, [EDX]

This is pretty simple code, right? Not much that
could go wrong here. This should simply get the
integer pointed to by the EDX register and store it
back into the EDX register. I checked the contents of
the address before running this instruction by
evaluating:

PInteger(EDX)^,X

The value at that address was $005414A0. It repre-
sents the address of FEntries^[0]. Stepping over the
assembly instruction and then evaluating the EDX
register, it had somehow become $005414CC! This
caused the wrong address to be patched. The
address was obviously still a pointer to valid
writeable memory, because no Access Violation
occurred at this stage. Instead, some other global
variable was being overwritten. And no change was
made to FEntries^[0].Proc^, so my procedural

variable was still nil, causing the access violation
when called through later.

I was utterly confused. Further testing showed
that the same .EXE file (not recompiled) worked
fine when debugged under Turbo Debugger.
When running the .EXE file standalone, or turning
off integrated debugging in the IDE, it also
worked fine. Not a trace of the bug.

I turned on the integrated debugging again and
pondered. I tried a build all. It didn’t help. I turned
off debug info for the unit. That didn’t help. I sim-
plified the code. That didn’t help. I watched as the
code magically performed the invalid lookup,
again and again.

Hmmm. The LSB of the integer was consistently
being modified from $A0 to $CC. That $CC pattern
reminded me of something. It is the value I use to
fill uninitialized structures in debug mode and it
just happens to be the opcode for the int 3 instruc-
tion (breakpoint interrupt). Aha! Just maybe the
integrated debugger was patching the wrong
address when it was setting one of the break-
points?!

When you create breakpoints in Delphi, the IDE
stores the unit name and line number of the break-
point. When you run the application, Delphi con-
verts this into an address in the code segment.
Then it saves the byte that was already there and
patches it with the breakpoint instruction (op-code
$CC). What if the line number or converted address
is screwed up somehow? What if it doesn’t point to
an address in your code, but to a global variable?

This is actually what happened in my case.
Restarting Delphi didn’t help, so I deleted all my
breakpoints (some 12 to 15, none of them marked
as invalid). Then the code worked again!

I could add new breakpoints and the code still
worked.

So, now you have been warned. It seems that the
breakpoint information Delphi maintains inter-
nally can become corrupt. In my case, it overwrote
a global variable. Be aware of this problem if you
suddenly find your data overwritten with a $CC
value during debugging. If the problem goes away
when you turn off the integrated debugger, you
know what the culprit is. The workaround seems
to be to delete all your breakpoints.

If you ever encounter this bug, if you find a con-
sistent way of reproducing it, or if you encounter it
in Delphi 4.02, I would very much like to hear
about it (as would Inprise).

38 The Delphi Magazine Issue 43

that called us to calculate the index
of the DLL routine we are calling.
However, the return address
pushed by the CPU as part of the
CALL instruction in the thunk is not
the address of the thunk itself, but
rather the address of the instruc-
tion following the thunk. To cor-
rect for this, we reduce the value of
the EDX register with the size of one
thunk (ie 5 bytes):

SUB EDX, TYPE TThunk

Note that we apparently cannot
use the SizeOf operator here: it
took me some time to get this right
(see Gotcha! Using SizeOf In BASM
on page 40). Now that we have EAX
pointing to the correct TDll
instance and EDX pointing to the
thunk that called us, we are ready
to give control over to the method
written in Pascal:

CALL TDll.DelayLoadFromThunk

DelayLoadFromThunk is a function,
and when it has done its business
(more about this later), it will
return the address of the actual
DLL routine that should be called.
If the DLL or routine could not be
found, an exception would have
been raised, so we don’t have to
worry about that case. As usual,
the function returns its result in
the EAX register.

Now we are facing a few tricky
issues. Firstly, we need to restore
the EAX, EDX and ECX registers to
their previous state, but we still
have to somehow retain the rou-
tine address currently stored in
the EAX register. Secondly, we have
to restore the state of the stack the
way it looked before the thunk was
called. Thirdly, we have to some-
how transfer control to the DLL
routine, without trashing any
registers along the way (Object
Pascal and general Win32 conven-
tions require us to preserve the
EDI, ESI, ESP, EBPand EBX registers).

It turns out we can kill three
birds with one stone. The stack has
two entries more than it should
when entering the DLL routine. In
one of these is the address we will
return to when leaving. This will
always point to the block of
thunking code. We don’t really
want to return to that code, we
want to ‘return’ to the DLL routine
instead. This is accomplished by
patching the contents of the stack
with the address of the DLL routine
stored in EAX:

MOV [ESP+16], EAX

Now that we don’t depend on the
value in EAX any more, we are free
to restore the three registers to
their original (and potentially
parameter holding) values:

POP ECX
POP EDX
POP EAX

Finally, the stack is still skewed by
one entry (the value of the
Self-pointer), so we simply
remove it by adjusting the stack
pointer (ESP):

ADD ESP, 4

On the top of the stack, we now
have the address of the DLL rou-
tine. We can transfer control to it
by simply returning. The RET
instruction has already been
added by the compiler as the stan-
dard epilogue code of the routine,
so we don’t have to write any more
assembly code:

// “RETurn” to the DLL!
end;

Voilà! We are now entering the DLL
routine and the register contents
and stack layout are identical to
what they would have been if the
user code had called the DLL
directly, without going via our
thunking routines.

The Order Of Things
Now we have covered all the really
tricky parts of the code. There are
only a few pieces missing. The
actual loading and linking of the
DLL routines is taken care of by the
TDll class: Listing 10 shows the
participating methods.

As we have seen, the assembly
code in ThunkingTarget calls into
the DelayLoadFromThunk method.
This method first calls
GetIndexFromThunk to convert the

function TDll.LoadHandle: HMODULE;
begin
if FHandle = 0 then begin
FHandle := Windows.LoadLibrary(PChar(FullPath));
if FHandle <> 0 then
Dlls.DllNotify(Self, daLoadedDll, nil);

end;
Result := FHandle;

end;
function TDll.GetHandle: HMODULE;
begin
Result := FHandle;
if Result = 0 then begin
Result := LoadHandle;
if Result = 0 then
Error(SCannotLoadLibrary,
[FullPath, SysErrorMessage(GetLastError)]);

end;
end;
function TDll.LoadProcAddrFromIndex(Index: integer;
var Addr: pointer): boolean;

begin
Result := ValidIndex(Index);
if Result then begin
Addr := Windows.GetProcAddress(Handle,
FEntries^[Index].Name);

Result := Assigned(Addr);
if Result then

Dlls.DllNotify(Self, daLinkedRoutine,
@FEntries^[Index]);

end;
end;
function TDll.GetProcAddrFromIndex(Index: integer): pointer;
begin
if not LoadProcAddrFromIndex(Index, Result) then
Error(SCannotGetProcAddress, [EntryToString(
FEntries^[Index]), FullPath, SysErrorMessage(
GetLastError)]);

end;
function TDll.DelayLoadIndex(Index: integer): pointer;
begin
Result := GetProcAddrFromIndex(Index);
FEntries^[Index].Proc^ := Result;

end;
function TDll.GetIndexFromThunk(Thunk: PThunk): integer;
begin
Result := (PChar(Thunk) - PChar(@FThunkingCode^.Thunks
[0])) div SizeOf(TThunk);

end;
function TDll.DelayLoadFromThunk(Thunk: PThunk):
pointer; register;

begin
Result := DelayLoadIndex(GetIndexFromThunk(Thunk));

end;

➤ Listing 10

Continued from page 36

40 The Delphi Magazine Issue 43

Thunk address to a routine index
and then calls DelayLoadIndex to
find and return the address of the
corresponding DLL routine.

In GetIndexFromThunk, we calcu-
late the routine index by subtract-
ing the start of the array from the
thunk address, finally dividing by
the size of a single thunk. We have
now found the index of the thunk
that called us in the FThunking
Code^.Thunks array. The same
index can be used in the FEntries^
array to get the address of the pro-
cedural variable and the name or
ordinal of the DLL routine. The
index we just calculated is passed

on to DelayLoadIndex. This first
calls GetProcAddrFromIndex to find
and return the DLL routine, then
patches the procedural variable so
that it points to the address found.
If the DLL or routine could not be
found, an exception is raised, so we
don’t have to add any error check-
ing at this level.

Following the call chain, we now
look at GetProcAddrFromIndex. This
aptly named routine passes the
buck on to LoadProcAddrFromIndex.
If the routine could not be found,
we raise an exception by calling the
class method Error.

Time to get some work done,
don’t you think? Well, your
patience has been rewarded. We
are now in LoadProcAddrFromIndex.
This routine tries to get the
address of the DLL routine, if it
cannot it returns false. First it
checks to see if the index parame-
ter is valid. Then it calls the Win32
API GetProcAddress to get the
address of the routine at that
entry. If we receive a non-nil value,
we call the notification method in
the DLLs object.

In the call to GetProcAddress, we
reference the Handleproperty. This
property has a GetHandle read
access method. In GetHandle, we
check to see if a valid handle
already exists. If not we call the
LoadHandle method to get it and
raise an exception via the Error
method if it still hasn’t been
loaded.

If necessary, LoadHandle calls the
Win32 API LoadLibrary to actually
load the DLL into memory. If the
DLL loaded successfully, we again
notify about this using the
DllNotify method of the DLLs
object.

Yawn... Are you still awake? That
description might sound like we

are doing things in a very round-
about way, but the reason I have
divided it up this much is to have
building blocks for additional func-
tionality, as we will soon see.

Using The Classes
We have now been through the
inner workings of the HVDll unit.
What might be more useful in the
long run is to know how the classes
can be used for everyday work. I
have included the public interface
of the TDll class in Listing 11.

TDll is the class you should be
instantiating in your import unit.
To give the application developer
greater flexibility and control, you
also want to put a reference to this
instance in the interface of the
unit. We saw an example of this
and how to call the Create con-
structor back in Listing 5. If you
feel like it, you can free your TDll
instance in your finalization
section, but this will be done
automatically by the Dlls object
anyway.

You can use the Load and Unload
methods to have better control on
when the DLL is loaded and
released from memory. Note that
Load will raise an EDllError if it has
problems linking to any of the rou-
tines. Use the Loaded property to
check if the DLL is already in
memory and the Available prop-
erty to see if the DLL can be loaded
(this will not raise any exceptions).
The Handle routine returns the
module handle of the DLL. Again
this raises an exception if it could
not be loaded.

Use HasRoutine to see if a specific
routine exists in the DLL. This is
done by passing in the address of
the procedural variable you want

TDll = class(TObject)
public
constructor Create(const DllName: string; const Entries: array of TEntry);
destructor Destroy; override;
procedure Load;
procedure Unload;
function HasRoutine(Proc: PPointer): boolean;
function HookRoutine(Proc: PPointer; HookProc: Pointer;
var OrgProc): boolean;

function UnHookRoutine(Proc: PPointer; var OrgProc): boolean;
property FullPath: string read FFullPath write SetFullPath;
property Handle: HMODULE read GetHandle;
property Loaded: boolean read GetLoaded;
property Available: boolean read GetAvailable;
property Count: integer read FCount;
property EntryName[Index: integer]: string read GetEntryName;

end;

➤ Listing 11

Gotcha! Using
SizeOf In BASM
I found a minor quirk in the way that
Delphi’s built-in assembler (BASM)
works. If you use the SizeOf operator
inside some assembly code, it will hap-
pily compile it for you, but the result is
not what you might expect. For
instance, compiling the following
assembly statement:

MOV EAX, SizeOf(byte)

you would expect the compiler to
produce:

MOV EAX, $1

However, the code actually produced is:

MOV EAX, $34

As you can see, the BASM compiler
evaluates SizeOf(byte) to $34 (or 52
decimal)! In fact, using the SizeOf oper-
ator on any structure, no matter how
large it is, it will always evaluate to 52! I
have no idea why this happens, but the
compiler does not generate any error or
warning, so you should be aware of it.

There are two possible workarounds.
First, you could simply use a Pascal
constant that has been assigned to the
correct SizeOf expression:

const
ByteSize = SizeOf(byte)

asm
MOV EAX, ByteSize

Even better, you can use the BASM
operator designed for the job, the TYPE
operator:

MOV EAX, TYPE byte

In the context of the SizeOf operator, it
seems the answer to life is not 42 any
more, according to BASM it’s 52!

March 1999 The Delphi Magazine 41

to check. This can be used to dis-
able features in the application
that depend on certain routines to
be available in the DLL, like this:

NewFeatureMenuItem.Enabled :=
MyDll.HasRoutine(
@@NewFeature);

The FullPath property is initially
set to the DllName parameter of the
constructor, but you can change
this at runtime to load DLLs in spe-
cific directories or with different
names. Note that if you don’t spec-
ify a specific directory, the stan-
dard Windows searching strategy
will be used (see the help file on
LoadLibrary). If you change this
property after the DLL has already

procedural variable, the address
of your hook routine and another
procedural variable to hold the
previous value (the back-hook). Be
careful to ensure that both your
hook routine and the procedural
variable use exactly the same
parameters and calling convention
as the original DLL routine. To turn
off hooking, use the UnHookRoutine
method.

There is also a class that main-
tains a list of all TDll instances that
have been created. You can see the
public interface of this class in
Listing 12.

The TDlls class holds a refer-
ence to all TDll objects created in

been loaded, the DLL will be
unloaded and all the thunks reacti-
vated. The next time a routine is
needed, the new DLL will be loaded
and linked to.

To get the name of a specific
import entry, use the EntryName
indexed property. The Count prop-
erty will return the number of
import entries that have been reg-
istered for this TDll object. These
properties can be useful inside a
handler for the OnDllNotify event
of the Dlls object (see below).

Finally, there are two methods to
support hooking of the DLL rou-
tines. This is mainly useful for
debugging purposes. Call
HookRoutine to hook a specific DLL
routine by giving the address of the

Calling Performance And Package Overhead

Originally, I had intended to blatantly announce that
the technique of using procedural variables to call DLL

routines actually produces slightly faster code than calling
the same routines using implicit loading. After further
investigation, I found that this is actually the case for code
compiled with Delphi 2, while the situation is rather more
complex in Delphi 3 and 4, due to the package support
these compilers must adhere to.

For implicitly loaded routines, the compiler CALLs an
address that again JMPs via a global variable to the actual
DLL routine. So there are three levels of indirection, see
Figure 1 in this boxout.

In Delphi 2, when calling through a procedural variable,
there are only two levels of indirection, it CALLs directly via
the procedural variable. See Figure 2 in this boxout.

One Step Backwards
We have now seen that Delphi 2 had a very efficient imple-
mentation of calling routines through procedural variables.
I found that the same code produced more complex (and
thus slower) code in Delphi 3 and 4. See Figure 3 below.

Here we are back to three levels of indirection. The
instruction pointer only changes once, so this code might

still be marginally faster than calling implicitly loaded
routines. However, instead of loading the contents of
the global variable directly, it first gets the address of
that global variable from some other automatically cre-
ated global variable, called EntryP in the illustration.
Somehow EntryP always contains the address of the
variable we’re interested in, Entry.

Why is this? Why not encode the address of the
global variable directly into the generated assembly
code? The short answer is package support.

Package Support Bites Back!
The reason for this extra level of indirection is to sup-
port packages. Whenever you use any global variable
from another unit, the compiler will generate code that
gets the actual address of that variable from another,
automatically created global variable. The reason is
that if the unit you used happens to reside, not in your
.EXE file, but in an external package, the address of that
global variable will be fixed up when the .EXE starts and
loads the package. This gives great flexibility, at the
cost of producing slightly larger and slower code.

The problem is that this overhead is present even if
your application does not use packages at all. This is to
assure that pre-compiled DCUs must not be recompiled
if you decide to use packages.

I have previously requested Inprise to document how
the package support in Delphi is implemented. This
kind of information can be important when
debugging. So far, they have declined to do it.

➤ Figure 1

➤ Figure 3➤ Figure 2

Continued on page 44

42 The Delphi Magazine Issue 43

Proper Code Generation
In the article, we look at how to create code on-the-fly to
be executed. However, we didn’t talk about the pre-
requisites for this to work. We cannot just use any old
memory block allocated with GetMem, for instance. We
would be able to patch in the code instructions alright,
but upon executing the code, we would get an Access
Violation.

The reason for this is that all memory pages in the
system have certain access rights associated with them. By
default, memory allocated with Delphi’s GetMem proce-
dure cannot be executed, because the memory pages
only have PAGE_READWRITE and not the PAGE_EXECUTE
right.

To avoid this problem we must explicitly set the desired
access rights for the memory block. This can be done with
the VirtualProtect routine. With this knowledge in
hand, we could be tempted to write code such as this:

System.GetMem(FThunks, 100);
// Patch in the code instructions here...
VirtualProtect(FThunks, 100, PAGE_EXECUTE,
@OldProtection);

Here we get a memory block using GetMem. This block now
has READWRITE rights. We patch in all the required
dynamic code instructions. Then we change the rights of
the memory block so that it can be executed.

Now, this code would work initially. You would be able
to call the generated code without causing Access Viola-
tions. However, after a short time you would probably
experience strange Access Violations inside Delphi’s
memory manager. The reason is that the VirtualProtect
routine doesn’t only change the rights of the 100 bytes of
memory that we requested. It is not that granular. Instead
it will change the rights in steps of 4Kb pages. This means
that other blocks of memory used by Delphi’s memory
manager also get their rights changed from READWRITE to
EXECUTE only. When Delphi subsequently tries to read or
write to those memory blocks, the Access Violation is gen-
erated.

Hmm. How do we get around this limitation? Well,
looking at the documentation for VirtualProtect, it is
apparent that there is a combination of rights that would
be right (sic) for us. Let’s try to change the code so that it
uses PAGE_EXECUTE_READWRITE instead.

Well, now the code finally works. But the question
remains: what should we do when we are going to free
the memory block? We could leave the rights as they are,
but that would be quite messy. After some time, large
amounts of the heap memory would have EXECUTE rights
and any invalid jumps into memory could go undetected,
causing all kinds of problems. Let’s set the rights back
before releasing the memory:

VirtualProtect(FThunks, 100, PAGE_READWRITE,
@OldProtection);
System.FreeMem(FThunks);

That would clean up properly for this block. However
(how many howevers can there be?), this could poten-
tially change the rights of another block of code from
EXECUTE_READWRITE back to READWRITE if it just happens
to be in the same memory page as FThunks. We could try
to get around this by keeping the value of the
OldProtection variable when allocating the memory and
using this to set the rights back to the previous state. This
would solve some cases, but not when the allocation and
deallocation order differs.

Oh... Sigh! We seem to have stepped into a wormhole
here [Wow! Time travel in Delphi! Ed]. Let’s take a step
backwards to see what we are doing wrong. The problem
with using the GetMem/VirtualProtect combination is
that GetMem has a granularity of 4 bytes, while
VirtualProtect has a granularity of 4Kb. So we have to
forget using GetMem for this purpose.

What other memory allocation routines are available?
Well, we have the VirtualAlloc routine. This will allocate
blocks in 4Kb page chunks and it will even let us set the
rights of the memory pages directly. Perfect! Using
VirtualAlloc directly is actually a very good solution. We
would do something like this:

FThunks := VirtualAlloc(nil, 100, MEM_COMMIT or
MEM_RESERVE, PAGE_EXECUTE_READWRITE);

After this allocation (assuming it succeeded), we would
be able to patch in the code and execute it without any
problems and there would be no conflicts with other code
sharing our page of memory. However (here we go
again), the fact that VirtualAlloc rounds the allocation
up to the nearest 4Kb boundary is also its greatest prob-
lem. I started my programming career using a ZX-81 with
the incredible amount of 16Kb of memory, so the
thought of wasting 4Kb to get 100 bytes of memory
makes me twitch. There must be a better way.

What we are looking for is the combination of GetMem’s
granularity and VirtualAllocs privacy when it comes to
page rights. What we want is a private heap just for gen-
erating code on the fly. This heap could be shared by all
entities that need memory blocks with EXE-
CUTE_READWRITE rights. Well, luckily there is a set of rou-
tines that makes it a breeze to implement private heaps:
HeapCreate, HeapAlloc, HeapSize, HeapFree and
HeapDestroy. There are other routines as well, but these
are the ones we need for our simple purpose.

To avoid using these arcane Win32 routines directly,
I’ve implemented a couple of wrapper classes in the
HVHeapsunit (see the code on the disk). The TPrivateHeap
class is a generic wrapper around the heap routines and it
provides the interface in Listing 1 in this boxout.

This class will allocate memory blocks with the normal
READWRITE rights. In normal situations, you would simply
use the GetMem and FreeMem methods that work just like
their equivalents in the System unit, only that the heap
they allocate from is private.

This class can be useful in itself to reduce memory frag-
mentation. If you have two large, independent subsys-
tems in your application that both allocate large numbers
of memory blocks, you could improve the memory utilisa-
tion and potentially performance by using separate pri-
vate heaps for each subsystem. To allocate object
instances from the private heap, you could override
NewInstance and FreeInstance and let the private heap
object take care of the allocations (see my article The Rise
And Fall Of TObject in Issue 35 for more details of this
technique).

For our specific purpose of allocation memory blocks
that can be executed, I have defined the TCodeHeap class,
see Listing 2.

Notice that the GetMem method defined in
TPrivateHeap was virtual. Here we override it, call the
inherited GetMem to do the actual allocation and then

immediately set the page protection flags to EXECUTE_
READWRITE. We are guaranteed that all the memory pages
belong to this private heap, so there will be no conflict in
doing this. We might set the rights of existing memory
blocks within the heap, but that does not matter as they
would already have been set to EXECUTE_READWRITE. All
users of the code heap agree that the rights should be the
same, so there is no danger of conflict.

In the HVDll unit, an instance of TCodeHeap is created
and stored in a field in the Dlls instance. In the
CreateThunksmethod of TDll, we use the GetMemmethod
of this code heap to do the allocations. This is a clean and
efficient way of getting memory blocks that can be used
for dynamic code generation.

TCodeHeap = class(TPrivateHeap)
public
procedure GetMem(var P{: pointer}; Size: DWORD);
override;

end;
implementation
procedure TCodeHeap.GetMem(var P{: pointer};
Size: DWORD);

var
Dummy: DWORD;

begin
inherited GetMem(P, Size);
Win32Check(Windows.VirtualProtect(Pointer(P), Size,
PAGE_EXECUTE_READWRITE, @Dummy));

end;

➤ Listing 2

type
TPrivateHeap = class(TObject)
public
destructor Destroy; override;
procedure GetMem(var P{: pointer}; Size: DWORD);
virtual;

procedure FreeMem(P: pointer);
function SizeOfMem(P: pointer): DWORD;
property Handle: THandle read GetHandle;
property AllocationFlags: DWORD
read FAllocationFlags write FAllocationFlags;

end;

➤ Listing 1

44 The Delphi Magazine Issue 43

the application. Early in the project
this class was central when con-
verting a TThunk address to a TDll
instance and routine index combi-
nation. Basically, a method of the
TDlls class would scan through all
the TDll objects to find the object
that owned the thunk. With the
improved thunking I finally imple-
mented (with the per-DLL thunk in
addition to the per-routine
thunks), this logic was no longer
necessary.

I decided to keep the TDlls class
and the global Dlls instance,
anyway. It provides a central point
of access to all dynamic DLL
objects in the application. It
automatically frees remaining TDll
instances when the application
closes. Finally, it allows you to
implement a handler of the
OnDllNotify event. This event is
called whenever a DLL is loaded or
unloaded, or when a DLL routine is
first linked to.

Demonstration Project
As usual, there is the traditional
demo project, see Figure 2. It uses
three different import units to
access the routines in a DLL called
Testdll.Dll. You might think this is
overkill, but we only want to dem-
onstrate three ways of importing
DLL routines. You can select what

TDllNotifyAction = (daLoadedDll, daUnloadedDll, daLinkedRoutine);
TDllNotifyEvent = procedure(Sender: TDll; Action: TDllNotifyAction;
Index: integer) of object;

TDlls = class(TList)
public
constructor Create;
destructor Destroy; override;
property Dlls[Index: integer]: TDll read GetDlls; default;
property OnDllNotify: TDllNotifyEvent read FOnDllNotify write FOnDllNotify;

end;

➤ Listing 12
import method to use by selecting
in the radiogroup labelled DLL
Import Method. The Testdll.dll
exports four routines taking four
parameters, but each with a differ-
ent calling convention. This is so
we can easily check that the import
method we are using works prop-
erly with all combinations. If you
select the HVDll method you will
also see some messages in the log-
ging pane, notifying when the DLL
is first loaded, when the routines
are linked to and when the DLL is
being unloaded.

Comparing With /DELAYLOAD
The HVDll unit gives Delphi users
many of the same benefits as the
/DELAYLOAD option of the VC++ 6.0
linker. However, there are a
number of differences. This has
mainly to do with the fact that
/DELAYLOAD is implemented as part
of the linker, while HVDll is imple-
mented as just another unit that
you include in your import units.

Because of the linker support,
VC++ users simply have to add an
option to the already confusing
array of project settings. No code
changes whatsoever are needed.

Contrast this with the HVDll solu-
tion, which forces you to write an
explicit import unit following the
format in Listing 3, and then use
this unit instead of the implied
import unit. To make this easier, it
would be possible to write a small
conversion utility to automatically
turn existing import units into
dual-mode import units that could
implement implicit or explicit
linking according to a compiler
DEFINE.

On the positive side, the HVDll
solution generates smaller per-
DLL and per-routine thunks. It is
also interesting to note that the
VC++ thunks do not preserve the
contents of the EAX register. I ini-
tially thought that this was a major
shortcoming in that it would not
support the register calling con-
vention. However, it turns out that
VC++’s __fastcall calling conven-
tion only uses EDX and ECX to pass
parameters, so it is safe to trash
EAX. It just means that Delphi DLLs
using the register calling conven-
tion cannot be easily used by VC++
(and that it would fail utterly if you
tried to /DELAYLOAD such a DLL).

Furthermore, the HVDll solution
is object oriented, so it is easy to
extend. You can easily set the path
and name of the DLL at runtime,
and you have the complete source
code. And last, but not least, it
works with Delphi!

Acknowledgement
Peter Sawatzki (www.sawatzki.de/
default.htm) wrote a similar 16-bit
unit for BP and Delphi 1.0. His code
inspired me to develop and extend
the idea on the Win32 platform.

Hallvard Vassbotn is a Senior
Software Developer at Reuters
Norge AS, Falcon R&D. You can
reach him at hallvard@balder.no

➤ Figure 2

Continued from page 41

	References
	Implicit Loading
	Classical Explicit Loading
	Improved Explicit Loading
	Effortless Explicit Loading
	Let The Magic Begin
	Generating Code On The Fly
	Inside ThunkingTarget
	The Case Of The Broken Breakpoints
	The Order Of Things
	Gotcha! Using SizeOf In BASM
	Using The Classes
	Calling Performance And Package Overhead
	Proper Code Generation
	Demonstration Project
	Comparing With /DELAYLOAD
	Acknowledgement

